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Abstract 
Haskell has long needed a debugger. Although there has been 
much research into the topic of debugging lazy functional pro-
grams, no robust tool has yet come from the Haskell communi ty 
that can help debug full Haskell. This paper describes a portable 
debugger for full Haskell, building only on commonly imple-
mented extensions. It is based on the concept of observation of  
intermediate data structures, rather than the more traditional  step-
ping and variable examination paradigm used by traditional im-
perative debuggers. 

1 Introduction 
Debuggers allow you to see inside your program while running, 
and help you understand both the flow of control and the internal 
data and structures that are being created, manipulated and de-
stroyed. The art of debugging is using this portal to locate  the 
difference between what the computer has been told to do, and 
what the programmer thinks the computer should be doing. When 
debugging an imperative program, the programmer might step 
through some suspect code using sample test data, stopping and 
examining variables at key points. Yet, the analog for functio nal 
languages is not so clear. What does it mean to stop on a specific 
line, or examine a variable, in a lazy functional language? 

In functional languages a listful style (and its generalizati on, 
structureful style) are strongly encouraged [2]. Listful and struc-
tureful algorithms are expressed in terms of pipelines of data -
transformers, glued together with intermediate data structure s. 
The structureful style tends to be pervasive in the fine grain level 
of lazy functional programming. In this paper, we argue that the 
analog to breakpointing and examining variables for a structureful  
program is observing intermediate data structures as they ar e 
passed between functions. This argument can be considered a 
generalization of the "debugging via dataflow" ideas proposed by  
Sinclair [10]. We also argue that functional programs written in 
other styles can also use our debugging paradigm to good effec t. 

Consider this Haskell function 

natural :: Int -> [Int] 
natural 
  = reverse  
  . map (`mod` 10) 
  . takeWhile (/= 0)  
  . iterate (`div` 10) 

The first step to understanding this listful function is to run the  
function with some example data. 

Main> natural 3408 
[3,4,0,8] 

This tells us what the function does, but not how the function 
works. To understand this function, we need to visualize the hid-
den intermediate structures behind the function, and see inside the 
pipeline of (lazy) intermediate lists. ($ is a combinator f or infix 
application) 

natural 3408 �
  reverse  

  . map (`mod` 10) 
  . takeWhile (/= 0)  
  . iterate (`div` 10) 
  $ 3408 �

  reverse  
  . map (`mod` 10) 
  . takeWhile (/= 0)  
  $ (3408 : 340 : 34 : 3 : 0 :…) �

  reverse  
  . map (`mod` 10) 
  $ (3408 : 340 : 34 : 3 : []) �

  reverse  
  $ (8 : 0 : 4 : 3 : []) �

  (3 : 4 : 0 : 8 : []) 

Displaying steps like this gets garrulous quickly. Yet the cri tical 
information - the intermediate structures - can be concisely ex-
pressed. 

-- after iterate (`div` 10) 
 (3408 : 340 : 34 : 3 : 0 : _) 
-- after takeWhile (/= 0) 
 ( 3408 : 340 : 34 : 3 : [] ) 
-- after map (`mod` 10) 
 ( 8 : 0 : 4 : 3 : [] ) 
-- after reverse 
 ( 3 : 4 : 0 : 8 : []) 

We want to build a portable debugger that lets Haskell users ge t 
concise data structure information, like the information displa yed 
above, about the structures in their Haskell programs.  

This paper has been submitted to the Haskell Workshop 2000.  
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Our overall debugging system is as follows: 

• We provide a Haskell library that contains combinators for 
debugging. (Taking this form allows the user to debug full 
Haskell.) 

• The frustrated Haskell programmer uses these debugging 
combinators to annotate their code, and re-runs their Haskell 
program. 

• The execution of the Haskell program produces a file, which   
traces the observations made by the combinators. 

• These observations can be viewed using an offline data struc-
ture browser, written in Java. 

The structure of this paper is as follows: After giving so me back-
ground context about debugging functional languages (Section 2), 
we describe our principal debugging combinator, giving several 
examples of usage (Sections 3 & 4). Then we explain how our 
debugging combinator works (Section 5), and describe our im-
plementation of a debugging toolkit based round the debugging 
combinator (Section 6). Next we describe some related work (Sec-
tion 7), and give possible future work (Section 8). 

2 Background 
The field of debugging lazy functional languages has been a fer-
tile research area for over ten years. In this brief ove rview we 
explain how debugging information is gathered, how the informa-
tion can be used, and discuss a commonly implemented debug-
ging combinator. For a more detailed account of the area, C hapter 
2 of Watson's thesis [15] is a great starting point. 

2.1 Tracing Execution 

The act of watching and remembering the reduction patterns of a 
functional language as it executes is called tracing. There a re ba-
sically three ways of tracing the execution: 

1. Instrumenting the code via transformations  

This is where the code is transformed to insert extra (side ef-
fecting) functions that record specific actions, like entering  
functions and evaluating structures. The transformation can 
either be done inside the compiler (and therefore compiler 
specific) or done as a preprocessing pass (complicating the 
compilation mechanism). In practice, the transformations 
turn out to be tied to a specific compiler. 

One example of tracing via transformations is the work by 
Sparud [11], in his trace option for the nhc compiler. Another 
recent example of instrumentation via transformation is the 
work by Watson [15]. Neither translation scheme are imple-
mented for full Haskell. 

2. Use a modified reduction engine 

This is where a reduction engine is augmented to gather trace 
information, and is completely compiler specific. One exam-

ple of such a reduction engine is the work by Nilsson [5], 
with a modified version of the G-machine. 

3. Use a modified interpreter 

This is where a direct interpreter of the language to be de-
bugged is constructed, which contains tracing code. This al-
ternative is not popular, however, because of the speed of 
this route does not typically permit debugging non-trivial ex-
amples. 

None of these techniques is particularly appealing. Using either  of 
the first two will tend to tie down a debugger to a specific  com-
piler implementation, and an aim of this project is to provide  a 
truly portable debugger. This paper introduces a new way of trac -
ing, in Section 5. It is not as general as the techniques above, but 
it is portable in practice. 

2.2 User Interaction 

Why can't we use traditional debugging technology, like gdb or 
Visual Studio, once we know how to gather an execution trace? 
Critical debugging concepts, however, do not map across to t he 
lazy functional world.  1  

• There are no assignments to examine during execution. 
• The concepts of sequences of actions or executing a 

specific line number do not exist.  
• Any closure has two parents, the static one (that build 

the closure and give context), and the dynamic one (that 
first evaluated the closure). 

• When a function is called, its arguments might not yet 
be evaluated. Should the debugger do extra evaluations? 

• Handling functional arguments also brings other differ-
ences. 

Considerable effort has been put into getting passed the problems 
introduced by the functional computational model, and make good 
use of the trace information. 

One approach is algorithmic debuggers, which were originally 
applied to the problem of debugging Prolog programs [9]. Algo-
rithmic debuggers compare the result of specific chunks of com-
putations (like function calls) with what the programmer intended.  
By asking the programmer (or an oracle) about expectations, t he 
debugger can home in on a bug's location. Algorithmic debugging 
is sometime called declarative debugging. 

Performing post-mortem debugging by using a complete trace (f or 
example) can allow the recovery of some the more traditio nal 
familiar debugging features. One such feature is seeing argume nts 
in their most evaluated form, and ignoring (to some extent) l azi-
ness [5]. Another is a variation of slicing, called Redex trails  [11]. 
However, complete post-mortem traces are very large. 

                                                             

1 Of course Haskell can have an imperative veneer, using the I O 
monad. It should be possible to use typical debugging technology 
for such parts of a Haskell program. 
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Typically, a lazy functional language debugger will offer a com-
bination of these (and other) approaches to the perplexed pro-
grammer. We take another approach, and argue that we should 
offer debugging on a Haskell expression level. As we shall se e, 
our debugger answers only one question - what are the contents of 
this structure. Since structures in Haskell are both rich and re gu-
lar, even this simple question can be the basis of a powerful d e-
bugging tool. 

2.3 Combinators for Observing Interme-
diate Structures 

All current Haskell implementations come with a (non-standard) 
function, trace. This has the type: 

trace :: String -> a -> a 

The semantics of trace is to print (as a side effect) the  first argu-
ment, and return the second argument. One problem with trace is 
that inserting it into Haskell code tends to be invasive, chang ing 
the structure of code, as well as changing the strictness because 
trace is hyper-strict in its first argument. (Tracing, in general, is 
more powerful than the basic tracing mechanism provided by the 
function, trace - a better name for trace might be bark!)  

Augustsson and Johnsson had a variation of trace in their LML 
compiler [1]. Their conclusion about trace was that it was gener-
ally difficult to understand the "mish-mash" of output from diff er-
ent instances of trace.  

We argue that our combinator is a next-generation trace; it's easier 
to use and has much cleaner side effects. This new combinator i s 
the subject of the next section. 

3 A New Debugging Combinator 
What form could a debugging combinator take? Using the exam-
ple in the introduction as evidence, we argue that it should take 
the form of a function that allows us to observe data struct ures in 
a transparent way. As a way of achieving this, consider the 
Haskell fragment: 

consumer . producer 

Now imagine a version of the Prelude function id (called ident 
here) that remembered its argument. We could then write: 

consumer . ident . producer 

ident is identical to the implementation of id in the Haskell P rel-
ude in terms of operation and denotation, except it remembers (as 
a side effect) the data structure that gets drawn through it . As far 
as the Haskell program is concerned, ident is just a version of id. 

To facilitate multiple observations in one program, we add a  
string argument, which is a label used only for identification pur-
poses. The type of our principal debugging combinator is 

observe :: (Observable a) => String -> a -> a 

Instead of the above example, we could write: 

consumer . observe "intermediate" . producer 

 

This has identical semantics to consumer . producer , but the 
intermediate observation is squirreled away, using the label "in-
termediate", in some persistent structure for later perusal . 

observe has a type class restriction on the object being obse rved. 
This does not turn out to be as big a problem as might be thought.  
We provide instances for all the Haskell98 base types (Int, B ool, 
Float, etc), as well as many containers (List, Array, Maybe, Tu-
ples, etc). We will return to the specifics of this restr iction in Sec-
tion 5.2, because the type class mechanism provided the frame-
work that enables observe to work. 

Some readers might have noticed that the type of observe is prac-
tically the same as the type for the trace function. There are major 
differences, however, between the two:  

• trace outputs its string as a side effect, while observe uses the 
string argument for a label. Typically this argument to ob-
serve is a constant string, as in the above example. 

• trace totally ignores its second argument, just returning it , 
while observe examines its second argument, but in a com-
pletely lazy, demand driven manner . That is, observe only 
looks at its second argument as much as the context that ob-
serve is being evaluated in. Observation of an infinite list,  or 
a list full of �  is perfectly valid, as we shall see shortly. 

• trace outputs to stderr, while observe sends its output to a log 
file, which is perused by a separate tool. 

Now we look at several examples of observe being used. 

3.1 Observing a finite list 

As a first example consider: 

ex1 :: IO () 
ex1 = print  
       ((observe "list" :: Observe [Int]) [0..9]) 

If we run this IO action inside the debugging context (explained in 
Section 6.1), we would make the observation 

-- list 
( 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : []) 

We have successfully observed an intermediate data structure, 
without changing the value or semantics of the final Haskell pr o-
gram. 

We use the observe type synonym to allow us to be explicit about 
what type we think we are observing. 

type Observe a = a -> a 

However, using this explicit typing is optional, we could have 
equally well written 

ex1 = print (observe "list" [0..9]) 

This definition however relies on the default mechanism choosing  
an Int or Integer list. Typically the type of observe is f ully deter-
mined by its context, but we sometimes include the type signature  
with our examples to make explicit to the reader what type is be-
ing observed. 
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3.2 Observing a intermediate list 

Observe can be used partially applied, which is the typical use 
scenario when observing inside a pipeline.  

ex2 = print  
    . reverse 
    . observe "intermediate" :: Observe [Int] 
    . reverse 
    $ [0..9] 

This observe makes the following observation  

-- intermediate 
( 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0 : []) 

3.3 Observing a infinite list 

Both the lists we have observed so far were finite. As an example 
of an observation on an infinite list, consider: 

ex3 :: IO () 
ex3 = print  
       (take 10 
          (observe "infinite list" [0..]) 
       ) 

Here we observe an infinite list, starting at 0, which has t he first 
10 elements taken from it, and printed. Running this example 
allows us to make the observation 

-- infinite list 
( 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : _) 

We can see that 0 to 9 have been evaluated, but the tail of the 10 th 
cons has not been evaluated, rendered using the notation " _". If 
more of the list were extracted, we would see more cons c ells, etc.  

3.4 Observing lists with unevaluated 
elements 

So what about unevaluated elements of the list? What if we to  
take the length of a finite list? 

ex4 :: IO () 
ex4 = print  
       (length 
         (observe "finite list" [1..10]) 
       ) 

This gives the observation as 

-- finite list 
(_ : _ : _ : _ : _ : _ : _ : _ : _ : _ : []) 

What if the elements were � ? 

ex5 :: IO () 
ex5 = print  
       (length 
         ((observe "finite list" :: Observe [()]) 
            [ error "oops!" | _ <- [0..9] 
         ) 
       ) 

This gives exactly the same debugging output as ex4. Because we 
never evaluate the elements, it did not matter what they were, 
even if the elements were bottom. We needed to give them some 
non-polymorphic type, so we can actually observe them, though. 

What about if only some elements are observed? 

ex6 :: IO () 
ex6 = let xs = observe "list" [0..9] 
      in print (xs !! 2 + xs !! 4) 

This example gives 

-- list 
(_ : _ : 2 :  _ : 4 : _) 

We can use observe to both see intermediate structures, an as  a 
tool to see how much of a lazy structure is actually eval uated, 
without fear of changing the evaluation order.  This is where the 
power of observe lies. 

There is a caveat which we will return to in Section 6. If we had 
inlined the right-hand side of the list definition xs in ex6 into the 
print statement, we would have two observers, as shown in ex7. 

ex7 :: IO () 
ex7 = let xs = [0..9] 
      in print ((observe "list" xs) !! 2  
                  + (observe "list" xs) !! 4) 

Now we see this observation 

-- list 
{ (_ : _ : 2 : _) 
, (_ : _ : _ : _ : 4 : _ ) 
} 

Remember, this is the same list observed from two differe nt 
places, so it has two individual contexts. For now, it is eno ugh to 
state that even if the compiler did inline observe, nothing obse rve 
does effects the execution of the Haskell code itself in any way. 

3.5 Multiple observes 

One program can contain many specific instances of observe. W e 
might rewrite the natural example from the introduction. ("…" 
refers to more text, as shown in output comments) 

natural :: Int -> [Int] 
natural 
 = observe "after reverse" :: Observe [Int] 
 . reverse  
 . observe "after map …" :: Observe [Int] 
 . map (`mod` 10) 
 . observe "after takeWhi …" :: Observe [Int] 
 . takeWhile (/= 0)  
 . observe "after iterate …" :: Observe [Int] 
 . iterate (`div` 10) 

Running this on the example data, 3408, gives: 

-- after iterate (`div` 10) 
 (3408 : 340 : 34 : 3 : 0 : _) 
-- after takeWhile (/= 0) 
 ( 3408 : 340 : 34 : 3 : [] ) 
-- after map (`mod` 10) 
 ( 8 : 0 : 4 : 3 : [] ) 
-- after reverse 
 ( 3 : 4 : 0 : 8 : []) 

This is exactly what we were looking for in our introduction!  
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4 Advanced uses of observe 
We have seen how observe is a powerful tool for seeing what  
before was hidden. We now look at a number of other ways of 
using observe for debugging, beyond simply looking inside pipe-
lines. 

4.1 Observing Functions 

If we can observe base types (like Int and Bool), and can obser ve 
containers (like tuples and lists), can we also observe Haske ll 
functions?  

What does it mean to observe a function? We argue that to ob-
serve a function is to observe a finite mapping from (observ able) 
arguments to (observable) results. So, for our observationa l pur-
poses, functions are just a bag of argument-result pairs, one for 
each time the observed function is invoked. 

Functions are observed only in the specific ways they are used.  
Function arguments (or results) might contain unevaluated as-
pects, like several of the examples in Section 3. 

What does this mean in practical terms? Let's look at an exa mple: 

ex8 = print 
    ((observe "length" :: Observe ([Int] -> Int)) 
        length [1..3] 
    ) 

This allows the following observation 

-- length 
let fn ( _ : _ : _ : []) = 3 

We notice a number of things about this example. 

• observe now takes three arguments, the label, the observed 
entity (the length function), and the argument to length. Re-
member that "observe <label>" is just a style of id, and id 
just returns its argument. The effect on the Haskell program 
can be explained using simple rewriting 

  (observe "length" :: Observe ([Int] ->Int)) 
 length [1..3] 
   -- remove the type annotation 
=  observe "length" length [1..3] 
   -- turn observe into id 
=  id length [1..3] 
   -- id takes one argument 
=  (id length) [1..3] 
   -- which is simply returns 
=  (length) [1..3] 

This line of reasoning also works with further arguments, and 
observe successfully can observe multiple argument func-
tions. 

• Rather than render functions as a bag of pairs, we take liber-
ties and use a more Haskell like syntax when printing debug-
ging output.  

• The length function did not look at part of its argument, spe-
cifically the elements of the list. This is in no way reflecting 
the state of the list itself. Someone else might have ev aluated 
the elements, but we will never see this by observing length, 

because the observation on length is only concerned with the 
way the argument and result is used specifically by length  in 
that context.  

Observing functions is general and powerful! We place observe a t 
the caller site, and can see the effect that a specific func tion has 
from this context, including higher order functions. 

ex9 = print 
      ((observe "foldl (+) 0 [1..4]"  
         :: Observe ((Int -> Int -> Int)  
                    -> Int -> [Int] -> Int) 
       ) foldl (+) 0 [1..4] 
      ) 

 

-- foldl (+) 0 [1..4] 
let fn { let fn 6 4 = 10 
                3 3 = 6 
                1 2 = 3 
                0 1 = 1 
       }  
       0 
       ( 1 : 2 : 3 : 4 : []) 
       = 10 

Notice by observing foldl, we have also observed its arguments, 
including a functional one. We can see exactly how higher-
orderness is used. 

We can make great use of observing functions when examining 
pipelines. Returning to our natural example, we can now observe 
the individual transformers, rather than the structures between 
them. 

natural :: Int -> [Int] 
natural 
 = observe "reverse"           reverse  
 . observe "map (`mod` 10)"    map (`mod` 10) 
 . observe "takeWhile (/= 0)"  takeWhile (/= 0) 
 . observe "iterate (`div` …)" iterate (`div` 10) 

Notice there is no " . " between the observes and the original code. 
We give the output from "iterate …" and "takeWhile …"; the 
others are similar in style.  

-- iterate (`div' 10) 
let fn { let fn 3408 = 340 
             fn 340 = 34 
             fn 34 = 3 
             fn 3 = 0 
         } 
         3408 = (3408 : 340 : 34 : 3 : 0 : _) 
 
-- takeWhile (/=0) 
let fn { let fn 3408 = True 
             fn 340 = True 
             fn 34 = True 
             fn 3 = True 
             fn 0 = False 
         } 
         (3408 : 340 : 34 : 3 : 0 : _) 
         = (3408 : 340 : 34 : 3 : []) 

This is a clear summary of what the transformers were doi ng. 
iterate took an integer (3408), and produced a stream of decreas-
ing numbers, of which the first 5 were evaluated. We also see  how 
the functional argument to iterate was used. takeWhile turned an 
infinite list into a finite list, when it found the element 0. 
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4.2 Observing the State Monad 

We can use observe to look at the state inside the state mo nad. 
State monads typically have a state transformer function tha t takes 
a complete state, and returns a new state. Lets call this function 
modify. 

modify :: (State -> State) -> M () 

We can observe the state at a specific point using the functio n 
observeM. 

observeM :: String -> M () 
observeM label  
   = modify (observe label :: Observe State) 

By placing observeM at appropriate places, we can take snapshot s 
of the state. Other combinators can be built to look inside o ther 
monads, like the reader monad and writer monad. 

4.3 Observing the IO Monad 

Can we observe an IO action? An IO action has two parts, the 
action (which is opaque), and the result of the action, which we 
can observe. We render an IO action using the pseudo-constructor 
<IO> , followed by an observation on the returned object. Consider 
this example: 

ex10 :: IO Int 
ex10 = print 
      ((observe "getChar" :: Observe (IO Char)) 
        getChar 
      ) 

It would render as 

-- getChar 
<IO> 'x' 

We read this as "some side effect happened, resulting in the va lue 
'x' being returned". As another example, consider: 

ex11 :: String -> IO () 
ex11 str  
 = print 
   (observe "putChar" :: Observe (Char -> IO ())) 
     putChar str 
   ) 

 

-- putChar 
let fn 'x' = <IO> () 

We read this as "we have a function that takes 'x', does som e side-
effect stuff, and returns unit". 

4.4 Summary of using observe 

We have seen many examples of observe successfully observing 
internal, sometimes intermediate, structures. It is both ge neral and 
flexible, working in many different practical settings, for e xample 
observing how functions are used, observing state inside monads, 
and observing IO actions. 

5 How does observe work? 
We have demonstrated that observe can be used as a powerful 
debugging tool, but we still need to answer the question of how t o 
implement observe in a portable way. This section introduces t his 
new mechanism. 

Take as an example this Haskell fragment. 

ex12 = let pair = (Just 1,Nothing) 
       in print (fst pair) 

What steps has pair gone through in the Haskell execution? All 
expressions start as unevaluated thunks. 

… pair = <thunk> -- start 

First, print is hyper-strict in its argument, so it starts  the evalua-
tion of the expression "(fst pair)". This causes pair, via f st, to be 
evaluated, returning a tuple, with two thunks inside it. 

… pair = (<thunk>,<thunk>) -- after step 1 

Now the fst function returns the first component of the tuple, a nd 
this element is further evaluated by print. 

… pair = (Just <thunk>,<thunk>) -- after step 2 

And finally, the thunk inside the Just constructor is evaluated, 
giving. 

… pair = (Just 1,<thunk>) -- after step 3 

This evaluation can be illustrated diagrammatically, showing the 
three evaluation steps that this structure went through. 

• � (1)  
( • , • )  
  � (2)  
  Just • 
       � (3)  
       1 

We can now explain the key ideas behind the implementation of 
observe.  

• We automatically insert side-effecting functions in place of  
the labeled arrows in the diagram above, which both return 
the correct result on the evaluation to weak head normal 
form, and also inform an offline agent that the reduction has 
taken place . All thunks (including internal thunks) are there-
fore replaced with functions that, when evaluated, trigger the 
informative side effect. 

• We use the type class mechanism as a vehicle for this sys -
tematic (runtime) rewriting. 

Next, we examine the details of both of these ideas. 
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5.1 Communicating the Shape of Data 
Structures 

We need to give enough information to our viewer to allow i t to 
rebuild a local copy of our observed structure. What informat ion 
might these side-effecting functions send?  

• What evaluation happened (location) 

• What the evaluation reduced to ((:), 3, Nothing, etc) 

So, in the example above we would pass the following informa-
tion via our side effecting function. 

 

Step Location Constructor 

(1) root tuple constructor with two 
children 

(2) first thunk inside (1) The Just constructor with one 
child 

(3) first thunk inside (2) The integer 1 

This information is enough to recreate the observed structure!   We 
start with an unevaluated thunk. 

• root 
We then accept step (1), giving 

( •  (1.1)  , • (1.2) )  
Here (1.1) represents the first thunk of the constructor produced 
by step (1), and (1.2) represented the second child from the same 
reduction. We then accept step (2), giving 

( Just • (2.1), • (1.2) ) 
Here (2.1) represents the first (and only) thunk of the constructo r 
produced by step (2). We finally accept step (3), giving 

( Just 1, • (1.2) ) 
Notice we give information about inner thunks we are updating 
using both the parent constructor, and the child index number. 

We now look at how to insert our message passing functions int o 
our data structures. 

5.2 Using Type classes for rewriting 

We use the type class mechanism to force repeated calls to  a 
worker function, observer, as and when a structure gets evalua ted. 
We have a class Observable, and for each observable Haskell 
object, we have an instance of this class. 

class Observable a where 
    observer :: a -> ObserveContext -> a 

Reusing our diagram from above, we have 3 calls to observer . 

• � observer (<…>,<…>) CXT  
( • , • ) 
  � observer (Just <…>) CXT  
  Just • 
       � observe 1 CXT  
       1 

The first call uses the type instance of Observable, the sec ond uses 
the Maybe instance, and the third uses the Int instance. Each call  
also is given a context, which contains information about where 
this thunk is in relation to its parent node. 

The Observable instance for 2-tuples is 

instance (Observable a,Observable b) 
   => Observable (a,b) where 
 observer (a,b) = sendObservePacket "," (do 
  a <- thunk a 
  b <- thunk b 
  return (a,b)) 

If observer is called at the 2-tuple type, it sends a packet,  saying it 
has found a tuple, and sets up two new thunks that are the compo-
nents of the tuple. The type of sendObservePacket is 

sendObservePacket :: String  
                  -> MonadObserver a  
                  -> ObserveContext  
                  -> a 

MonadObserver is a lazy state monad that both counts the total  
number of sub-thunks this constructor has, and provides a unique 
context for the sub-thunks. thunk has type 

thunk :: (Observable a) => a -> MonadObserver a 

thunk includes a call back to observer, but at the correct type f or 
the sub-thunk.  

We now run through an example, to illustrate observer actually 
rewriting structures. We use a simplified variation of our earlier 
example. 

main = let pair = observe "pair" (42,88) 
       in print (fst pair) 

We expect this to tell us we have a 2-tuple, and that the first  ele-
ment is 42. We do not expect observe to tell us anything about the  
second element of the tuple, because it is not evaluated.  

observe is simply a wrapper to observer. 

main = let pair = observer (42,88) {…root…} 
       in print (fst pair) 

Here we are using {…root…} to notate a context that contains 
some information, including this is a root. Now the first t ime 
someone evaluates pair, pair evaluates to 

… pair = observer <thunk> {…root…} 

observer is strict in its first argument, reducing to 

… observer (<thunk>,<thunk) {…root…} 

We can now execute the function observer for tuples. 
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… sendObservePacket "," (do 
  a <- thunk <thunk> 
  b <- thunk <thunk> 
  return (a,b)) {…root…} 

sendObservePacket now issues a side effect, and passes the con-
text (root) the constructor name (",") and the number of childre n 
(2). The thunk inside the monad evaluates to a new call to ob-
server, and sendObservePacket returns the tuple. 

… ( observer <thunk> {…pId = X, portNo = 0…} 
  , observer <thunk> {…pId = X, portNo = 1…} 
  ) 

thunk is lazy in its argument, with respect to the monadic aspec t 
of the evaluation, so even though we've noted we have 2 thunks, 
we've not actually demanded any more evaluation that the conte xt 
wanted. To continue, the first element of the pair is select ed (via 
fst).  

… observer <thunk> {…pId = X, portNo = 0…} 

We have thrown away the send element of the tuple, and with it 
the side effecting call to observer. In this way, because w e do not 
evaluate observer over the second element of the tuple, we w ill 
never observe the contents of this element, and never do prema-
ture evalutation because of observe. 

The call to observer (that resides in the first element of  the tuple) 
now evaluates its first argument. 

… observer 42 {…pId = X, portNo = 0…} 

Which now can reduce to 

… sendObservePacket (show 42)  
                    (return 42)  

     {…pId = X, portNo = 0…} 

As above, this issues a message (the number 42, child of X, a t port 
number zero), and returns the value, this time 42. 

… 42 

6 The Haskell Object Observation 
Debugger 

We have an implementation of these ideas; incorporating them 
into a full-scale debugging tool we call the Haskell Object Obser-
vation Debugger. We give a short overview of the tool he re. A 
user manual is pending.  

Figure 1 gives the high level architecture of the Haskell Obj ect 
Observation debugger. 

• The user is responsible for producing a log file of the 
observations. The easiest way of doing this is to import 
the Observe library, which exports several debugging 
functions, including observe.  

• Using the Observe library produces a log file in XML 
format.  

• The browser then reads the XML audit trail of observa-
tions, and recreates the structures (much like was done 
in Section 5.1) 

6.1 The Observe library 

The observe library is an implementation of the observe combi na-
tor, some supporting combinators, and many instances for vario us 
Haskell types. Observe provides:  

Base Types: Int, Bool, Float, Double, Integer, Char, () 

(Observable a) => [a]  and (Maybe a) 

(Observable a, Observable b)  

               => (a,b) and (Array a b) and (Either  a b) 

Constructors: 

(...) => 3-tuple, 4-tuple, 5-tuple 

Functions:  (Observable a, Observable b) => (a -> b) 

Extensions: Exceptions (error, etc)   -- with GHC and STG Hugs 

 

In order to do debugging, you need to be inside a debugging 
mode. When this mode is turned on, the trace logfile is creat ed, 
and the system is ready for receiving observations. When the  
mode is turned off, the trace logfile is closed. We provide  a com-
binator that helps with these operations. 

Haskell 

Program 

Observe 

Library 

XML 

trace 

calls writes 

read by  

 1 : _ : 3 : _ 

Browser 

Figure 1: High Level Architecture of the Haskell Object  Observation Debugger  
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runO :: IO () -> IO () 

This turns on observations, runs the provided IO action, turns off  
observations, and returns. In a Haskell program with main, you 
might write 

main = runO $ do  
   .. rest of program .. 

If an observe is executed without the observation mechanism 
being turned on, then it behaves like before (passing on its second 
argument) but simply does not record the observation. 

To help with interactive use, we provide two extra combinator s. 

printO :: (Show a) => a -> IO () 
printO expr = runO (print expr) 
 
putStrO :: String -> IO () 
putStrO expr = runO (putStr expr) 

These are provided for convenience. For example, in Hugs you 
might write 

Module> printO (observe "list" [0..9]) 

Because this version of print starts the observations, you c an use it 
at the Hugs prompt, and make observations on things at the com-
mand line level. 

Though Observe.lhs is itself portable (only needing unsafePer-
formIO) we also provide versions of Observe.lhs for speci fic 
compilers. While Classic Hugs98 uses the standard Observe.lhs, 
both GHC and STG Hugs use extended versions that provide extra 
functionality for observing Exceptions. Catching, observing and 
rethrowing exceptions allows you to observe exactly where in 
your data structures an error is raised, and can also be used f or 
debugging programs that blackhole. 

In the Appendix we give code fragments from the Observe li-
brary, which include many more examples of instances for the 
Observable class. If a user wants to observe their own str uctures, 
then they need to provide their own instances. However, as can be 
seen, this is quite straightforward. 

The trace log is put into a file called observe.xml. Though it might 
seem that XML is a poor choice for an intermediate format , off 
the shelf compression tools result in a surprisingly good quali ty of 
compression (around 90%), which gives significantly better foot  
print size than straightforward binary format, and we have plans  
for a future version that uses a pre-compressed trace. 

There are a couple of important caveats about having observe as a 
function provided by a library, rather than a separate compila-
tion/interpretation mode. 

• observe is referentially transparent with regard to the exec u-
tion of the Haskell program, but as we saw in Section 3.4, 
observe is not referentially transparent with regard to poss i-
ble observations it might make. Compiler optimizations 
might move observe around, changing what is observed. 

This does not turn out to be a problem in practice. The trans-
formation shown in Section 3.4 and other problematic trans-
formations, though technically valid, change the sharing be-

havior of the program. Compilers do not like to change these 
sorts of properties without fully understanding the ramifica-
tions of doing so. Furthermore, the worst that can happen is a 
single structure is observed a number of times. If this occu r-
res, it should be obvious what is happening. 

This glitch with observe turns out not to be a problem in 
GHC, Classic Hugs and STG Hugs. If any other Haskell 
compiler has a problem with inappropriate sharing of ob-
serve, this can be fixed, even by adding a special case to the 
sharing optimization. It is a lot easier to add special ca ses 
than a whole debugger! 

• Hugs does not re-evaluate top level updatable values, called 
Constant Applicative Forms (CAF's), between specific invo-
cations of expressions at the command line prompt. This is a 
good thing in general, but it also means that if you want to 
observe a structure inside a CAF's, you need to reload the of -
fending CAF each time you want to observe it. This is a just  
minor annoyance in practice; perhaps a Hugs flag turning off 
caching of CAF's between expression evaluations could be 
added.  

6.2 Using the HOOD browser 

To demonstrate our browser tool, take the example observatio n on 
foldl, from Section 4.1. We use runO inside main to turn on and 
off the observation machinery. 

main :: IO () 
main = runO ex9 
ex9 :: IO () 
ex9 = print 
      ((observe "foldl (+) 0 [1..4]"  
         :: Observe ((Int -> Int -> Int)  
                    -> Int -> [Int] -> Int) 
       ) foldl (+) 0 [1..4] 
      ) 

This produces a file called observe.xml. We now start our bro wser 
- the details are implementation dependent, but this can be done 
directly using a JVM, or from inside Netscape or Internet E x-
plorer. After the browser is started, it offers the user a list of pos-
sible observations to look at. 

  

This shows us we have loads 65 "events" (observation steps). W e 
only have one observation ("foldl (+) 0"), and we choose to di s-
play it after evaluation, giving 
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This display uses colors to give information beside the raw text. 
We use purple for base types, blue for constructors, black for 
syntax, and yellow highlighting for the last expression changed. 

This viewer has the ability to step forwards and backwards 
through the observation, seeing what part of the observation wa s 
evaluated (demanded) in what order. Though in many cases we 
are not interested in this information, it sometimes is inv aluable. 
For example, we step back a few steps during our perusal of the 
fold example, and we see a strange thing. 

 

We use a (red) '?' to signify an expression that has been enter ed 
(someone has requested its evaluation), but has not yet reached 
weak head normal form. We can see we have a number of ques-
tion marks, which correspond to a rather nasty chain of enters as a 
consequence of a lazy accumulating parameter, a well-known 
strictness bug.  

This dynamic viewing of how structure and functions are used 
inside real contexts can bring a whole new level of understanding 
of what goes on when we evaluate functional programs, and could 
serve a useful pedagogical tool. 

7 Related Work 
We have already discussed a number of debugging systems, and 
they all give context to this work. There are two pieces o f closely 
related work that should be given special mention. 

• Firstly Hawk, a microprocessor architecture specificatio n 
embedded language has a function called probe [4].  

probe :: Filename -> Signal a -> Signal a 

probe  works exactly like observe on the Signal level, where 
Signals are just lazy lists. However,  probe  is strict in the 
contents of the signal, so it can change the semantics of a sig-
nal. Encouragingly, probe  has turned out to be extremely 
useful in practice. 

• Secondly, the stream-based debugger in [12] is also related, 
because it also puts emphasis on debugging via understand-
ing intermediate structures, even if the tracing mechanism 
was completely different. 

The work in this paper was undertaken because of the success 
stories told by both these projects, and the hope that the genera li-
zation of both will be useful in practice when debugging Haskell 
programs. 

8 Conclusions & Future Work 
All previous work on debuggers for Haskell have only been im-
plemented for subsets of Haskell, and are therefore of limit ed use 
for debugging real Haskell programs. This paper combats the nee d 
for debugging real Haskell by using a portable library of debug-
ging combinators, and develops a surprisingly rich debugging 
system using them.  

There is work to be done with building semantics for observe. T he 
semantics given in [3] would be a good place to start. A semantics 
could clean up the caveats that were discussed in Sections 3.4 and 
6.1. 

This debugging system could be made even more useful if the 
Observable class restriction was removed. It would be conce iv-
able to have a compiler flag where Observable is passed sil ently 
everywhere, and therefore can be used without type restrictions , 
provided we supply a default instance for Observe. 

The pretty printing algorithm used in the browser is robust (its  
actually a Java port of the Haskell algorithm published in [13]) 
but the printing of structures is inflexible. For example, we st ill 
print strings as a list of characters, which is verbose. A nother 
example is when displaying abstract syntax trees; concrete synt ax 
is typically more concise. It would be nice to have a flexi ble 
scheme for providing rendering shortcuts like these. 
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Hood will be packaged and available for download real soon now.  
The source code is available from the same CVS repository  as 
GHC and Hugs.  

HOOD has a web page: http://www.cse.ogi.edu/~andy/hood/ 
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Appendix A - Haskell Code from Observe.lhs 
class Observable a where 
 observer :: a -> ObserveContext -> a  
 
observe :: (Observable a) => String -> a -> a 
observe name a = generateContext name maxBound a 
 
type Observing a = a -> a 
 
-- Some Haskell Base types 
instance Observable Int  where { observer = observe Lit } 
instance Observable Bool  where { observer = observ eLit } 
instance Observable Char  where { observer = observ eLit } 
instance Observable ()  where { observer = observeL it } 
 
observeLit :: (Show a) => a -> ObserveContext -> a 
observeLit lit cxt = 
 seq lit $ 
 sendObservePacket (show lit) (return lit) cxt 
 
-- Some constructors 
instance (Observable a,Observable b) => Observable (a,b) where 
 observer (a,b) = sendObservePacket "," (do 
  a <- thunk a 
  b <- thunk b 
  return (a,b)) 
 
instance (Observable a) => Observable [a] where 
 observer (a:as) = sendObservePacket ":" (do 
  a <- thunk a 
  as <- thunk as 
  return (a:as)) 
 observer [] = sendObservePacket "[]" (return []) 
 
-- The thunk wrapper round observer 
data MonadObserver a = MonadObserver { runMO :: Int  -> Int -> Int -> (a,Int) } 
 
instance Monad MonadObserver where 
 return a = MonadObserver (\ d c i -> (a,i)) 
 fn >>= k = MonadObserver (\ d c i -> 
  case runMO fn d c i of 
    (r,i2) -> runMO (k r) d c i2 
  ) 
 
thunk :: (Observable a) => a -> MonadObserver a 
thunk a = MonadObserver $ \ depth parent port -> 
  ( observer a (ObserveContext 
    { observeParent = parent 
    , observePort   = port 
    , observeDepth  = depth 
    })  
  , port+1 ) 
 
-- Now some side effecting utility functions 
sendObservePacket :: String -> MonadObserver a -> O bserveContext -> a 
sendObservePacket consLabel fn context = unsafePerf ormIO $  
     do { g <- readIORef observeGlobal 
 ; case g of 
    NoObserveGlobal 
      -> error "The global observe state is not ena bled" 
    _ -> return () 
 ; let node = observeUniq g 
 ; writeIORef observeGlobal (g { observeUniq = node  + 1 }) 
 ; let (r,portCount) = runMO fn (observeDepth conte xt - 1) node 0 
 ; hPutStrLn (observeHandle g) 
      (xmlCons node context (showXmlString consLabe l) portCount) 
 ; return r 
 } 


