
www.manaraa.com

- 1 -

Debugging Haskell by Observing Intermediate Data St ructures

Andy Gill
Oregon Graduate Institute

andy@cse.ogi.edu
http://www.cse.ogi.edu/~andy

Abstract
Haskell has long needed a debugger. Although there has been
much research into the topic of debugging lazy functional pro-
grams, no robust tool has yet come from the Haskell communi ty
that can help debug full Haskell. This paper describes a portable
debugger for full Haskell, building only on commonly imple-
mented extensions. It is based on the concept of observation of
intermediate data structures, rather than the more traditional step-
ping and variable examination paradigm used by traditional im-
perative debuggers.

1 Introduction
Debuggers allow you to see inside your program while running,
and help you understand both the flow of control and the internal
data and structures that are being created, manipulated and de-
stroyed. The art of debugging is using this portal to locate the
difference between what the computer has been told to do, and
what the programmer thinks the computer should be doing. When
debugging an imperative program, the programmer might step
through some suspect code using sample test data, stopping and
examining variables at key points. Yet, the analog for functio nal
languages is not so clear. What does it mean to stop on a specific
line, or examine a variable, in a lazy functional language?

In functional languages a listful style (and its generalizati on,
structureful style) are strongly encouraged [2]. Listful and struc-
tureful algorithms are expressed in terms of pipelines of data -
transformers, glued together with intermediate data structure s.
The structureful style tends to be pervasive in the fine grain level
of lazy functional programming. In this paper, we argue that the
analog to breakpointing and examining variables for a structureful
program is observing intermediate data structures as they ar e
passed between functions. This argument can be considered a
generalization of the "debugging via dataflow" ideas proposed by
Sinclair [10]. We also argue that functional programs written in
other styles can also use our debugging paradigm to good effec t.

Consider this Haskell function

natural :: Int -> [Int]
natural
 = reverse
 . map (`mod` 10)
 . takeWhile (/= 0)
 . iterate (`div` 10)

The first step to understanding this listful function is to run the
function with some example data.

Main> natural 3408
[3,4,0,8]

This tells us what the function does, but not how the function
works. To understand this function, we need to visualize the hid-
den intermediate structures behind the function, and see inside the
pipeline of (lazy) intermediate lists. ($ is a combinator f or infix
application)

natural 3408 �
 reverse

 . map (`mod` 10)
 . takeWhile (/= 0)
 . iterate (`div` 10)
 $ 3408 �

 reverse
 . map (`mod` 10)
 . takeWhile (/= 0)
 $ (3408 : 340 : 34 : 3 : 0 :…) �

 reverse
 . map (`mod` 10)
 $ (3408 : 340 : 34 : 3 : []) �

 reverse
 $ (8 : 0 : 4 : 3 : []) �

 (3 : 4 : 0 : 8 : [])

Displaying steps like this gets garrulous quickly. Yet the cri tical
information - the intermediate structures - can be concisely ex-
pressed.

-- after iterate (`div` 10)
 (3408 : 340 : 34 : 3 : 0 : _)
-- after takeWhile (/= 0)
 (3408 : 340 : 34 : 3 : [])
-- after map (`mod` 10)
 (8 : 0 : 4 : 3 : [])
-- after reverse
 (3 : 4 : 0 : 8 : [])

We want to build a portable debugger that lets Haskell users ge t
concise data structure information, like the information displa yed
above, about the structures in their Haskell programs.

This paper has been submitted to the Haskell Workshop 2000.

www.manaraa.com

- 2 -

Our overall debugging system is as follows:

• We provide a Haskell library that contains combinators for
debugging. (Taking this form allows the user to debug full
Haskell.)

• The frustrated Haskell programmer uses these debugging
combinators to annotate their code, and re-runs their Haskell
program.

• The execution of the Haskell program produces a file, which
traces the observations made by the combinators.

• These observations can be viewed using an offline data struc-
ture browser, written in Java.

The structure of this paper is as follows: After giving so me back-
ground context about debugging functional languages (Section 2),
we describe our principal debugging combinator, giving several
examples of usage (Sections 3 & 4). Then we explain how our
debugging combinator works (Section 5), and describe our im-
plementation of a debugging toolkit based round the debugging
combinator (Section 6). Next we describe some related work (Sec-
tion 7), and give possible future work (Section 8).

2 Background
The field of debugging lazy functional languages has been a fer-
tile research area for over ten years. In this brief ove rview we
explain how debugging information is gathered, how the informa-
tion can be used, and discuss a commonly implemented debug-
ging combinator. For a more detailed account of the area, C hapter
2 of Watson's thesis [15] is a great starting point.

2.1 Tracing Execution

The act of watching and remembering the reduction patterns of a
functional language as it executes is called tracing. There a re ba-
sically three ways of tracing the execution:

1. Instrumenting the code via transformations

This is where the code is transformed to insert extra (side ef-
fecting) functions that record specific actions, like entering
functions and evaluating structures. The transformation can
either be done inside the compiler (and therefore compiler
specific) or done as a preprocessing pass (complicating the
compilation mechanism). In practice, the transformations
turn out to be tied to a specific compiler.

One example of tracing via transformations is the work by
Sparud [11], in his trace option for the nhc compiler. Another
recent example of instrumentation via transformation is the
work by Watson [15]. Neither translation scheme are imple-
mented for full Haskell.

2. Use a modified reduction engine

This is where a reduction engine is augmented to gather trace
information, and is completely compiler specific. One exam-

ple of such a reduction engine is the work by Nilsson [5],
with a modified version of the G-machine.

3. Use a modified interpreter

This is where a direct interpreter of the language to be de-
bugged is constructed, which contains tracing code. This al-
ternative is not popular, however, because of the speed of
this route does not typically permit debugging non-trivial ex-
amples.

None of these techniques is particularly appealing. Using either of
the first two will tend to tie down a debugger to a specific com-
piler implementation, and an aim of this project is to provide a
truly portable debugger. This paper introduces a new way of trac -
ing, in Section 5. It is not as general as the techniques above, but
it is portable in practice.

2.2 User Interaction

Why can't we use traditional debugging technology, like gdb or
Visual Studio, once we know how to gather an execution trace?
Critical debugging concepts, however, do not map across to t he
lazy functional world. 1

• There are no assignments to examine during execution.
• The concepts of sequences of actions or executing a

specific line number do not exist.
• Any closure has two parents, the static one (that build

the closure and give context), and the dynamic one (that
first evaluated the closure).

• When a function is called, its arguments might not yet
be evaluated. Should the debugger do extra evaluations?

• Handling functional arguments also brings other differ-
ences.

Considerable effort has been put into getting passed the problems
introduced by the functional computational model, and make good
use of the trace information.

One approach is algorithmic debuggers, which were originally
applied to the problem of debugging Prolog programs [9]. Algo-
rithmic debuggers compare the result of specific chunks of com-
putations (like function calls) with what the programmer intended.
By asking the programmer (or an oracle) about expectations, t he
debugger can home in on a bug's location. Algorithmic debugging
is sometime called declarative debugging.

Performing post-mortem debugging by using a complete trace (f or
example) can allow the recovery of some the more traditio nal
familiar debugging features. One such feature is seeing argume nts
in their most evaluated form, and ignoring (to some extent) l azi-
ness [5]. Another is a variation of slicing, called Redex trails [11].
However, complete post-mortem traces are very large.

1 Of course Haskell can have an imperative veneer, using the I O
monad. It should be possible to use typical debugging technology
for such parts of a Haskell program.

www.manaraa.com

- 3 -

Typically, a lazy functional language debugger will offer a com-
bination of these (and other) approaches to the perplexed pro-
grammer. We take another approach, and argue that we should
offer debugging on a Haskell expression level. As we shall se e,
our debugger answers only one question - what are the contents of
this structure. Since structures in Haskell are both rich and re gu-
lar, even this simple question can be the basis of a powerful d e-
bugging tool.

2.3 Combinators for Observing Interme-
diate Structures

All current Haskell implementations come with a (non-standard)
function, trace. This has the type:

trace :: String -> a -> a

The semantics of trace is to print (as a side effect) the first argu-
ment, and return the second argument. One problem with trace is
that inserting it into Haskell code tends to be invasive, chang ing
the structure of code, as well as changing the strictness because
trace is hyper-strict in its first argument. (Tracing, in general, is
more powerful than the basic tracing mechanism provided by the
function, trace - a better name for trace might be bark!)

Augustsson and Johnsson had a variation of trace in their LML
compiler [1]. Their conclusion about trace was that it was gener-
ally difficult to understand the "mish-mash" of output from diff er-
ent instances of trace.

We argue that our combinator is a next-generation trace; it's easier
to use and has much cleaner side effects. This new combinator i s
the subject of the next section.

3 A New Debugging Combinator
What form could a debugging combinator take? Using the exam-
ple in the introduction as evidence, we argue that it should take
the form of a function that allows us to observe data struct ures in
a transparent way. As a way of achieving this, consider the
Haskell fragment:

consumer . producer

Now imagine a version of the Prelude function id (called ident
here) that remembered its argument. We could then write:

consumer . ident . producer

ident is identical to the implementation of id in the Haskell P rel-
ude in terms of operation and denotation, except it remembers (as
a side effect) the data structure that gets drawn through it . As far
as the Haskell program is concerned, ident is just a version of id.

To facilitate multiple observations in one program, we add a
string argument, which is a label used only for identification pur-
poses. The type of our principal debugging combinator is

observe :: (Observable a) => String -> a -> a

Instead of the above example, we could write:

consumer . observe "intermediate" . producer

This has identical semantics to consumer . producer , but the
intermediate observation is squirreled away, using the label "in-
termediate", in some persistent structure for later perusal .

observe has a type class restriction on the object being obse rved.
This does not turn out to be as big a problem as might be thought.
We provide instances for all the Haskell98 base types (Int, B ool,
Float, etc), as well as many containers (List, Array, Maybe, Tu-
ples, etc). We will return to the specifics of this restr iction in Sec-
tion 5.2, because the type class mechanism provided the frame-
work that enables observe to work.

Some readers might have noticed that the type of observe is prac-
tically the same as the type for the trace function. There are major
differences, however, between the two:

• trace outputs its string as a side effect, while observe uses the
string argument for a label. Typically this argument to ob-
serve is a constant string, as in the above example.

• trace totally ignores its second argument, just returning it ,
while observe examines its second argument, but in a com-
pletely lazy, demand driven manner . That is, observe only
looks at its second argument as much as the context that ob-
serve is being evaluated in. Observation of an infinite list, or
a list full of � is perfectly valid, as we shall see shortly.

• trace outputs to stderr, while observe sends its output to a log
file, which is perused by a separate tool.

Now we look at several examples of observe being used.

3.1 Observing a finite list

As a first example consider:

ex1 :: IO ()
ex1 = print
 ((observe "list" :: Observe [Int]) [0..9])

If we run this IO action inside the debugging context (explained in
Section 6.1), we would make the observation

-- list
(0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : [])

We have successfully observed an intermediate data structure,
without changing the value or semantics of the final Haskell pr o-
gram.

We use the observe type synonym to allow us to be explicit about
what type we think we are observing.

type Observe a = a -> a

However, using this explicit typing is optional, we could have
equally well written

ex1 = print (observe "list" [0..9])

This definition however relies on the default mechanism choosing
an Int or Integer list. Typically the type of observe is f ully deter-
mined by its context, but we sometimes include the type signature
with our examples to make explicit to the reader what type is be-
ing observed.

www.manaraa.com

- 4 -

3.2 Observing a intermediate list

Observe can be used partially applied, which is the typical use
scenario when observing inside a pipeline.

ex2 = print
 . reverse
 . observe "intermediate" :: Observe [Int]
 . reverse
 $ [0..9]

This observe makes the following observation

-- intermediate
(9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0 : [])

3.3 Observing a infinite list

Both the lists we have observed so far were finite. As an example
of an observation on an infinite list, consider:

ex3 :: IO ()
ex3 = print
 (take 10
 (observe "infinite list" [0..])
)

Here we observe an infinite list, starting at 0, which has t he first
10 elements taken from it, and printed. Running this example
allows us to make the observation

-- infinite list
(0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : _)

We can see that 0 to 9 have been evaluated, but the tail of the 10 th
cons has not been evaluated, rendered using the notation " _". If
more of the list were extracted, we would see more cons c ells, etc.

3.4 Observing lists with unevaluated
elements

So what about unevaluated elements of the list? What if we to
take the length of a finite list?

ex4 :: IO ()
ex4 = print
 (length
 (observe "finite list" [1..10])
)

This gives the observation as

-- finite list
(_ : _ : _ : _ : _ : _ : _ : _ : _ : _ : [])

What if the elements were � ?

ex5 :: IO ()
ex5 = print
 (length
 ((observe "finite list" :: Observe [()])
 [error "oops!" | _ <- [0..9]
)
)

This gives exactly the same debugging output as ex4. Because we
never evaluate the elements, it did not matter what they were,
even if the elements were bottom. We needed to give them some
non-polymorphic type, so we can actually observe them, though.

What about if only some elements are observed?

ex6 :: IO ()
ex6 = let xs = observe "list" [0..9]
 in print (xs !! 2 + xs !! 4)

This example gives

-- list
(_ : _ : 2 : _ : 4 : _)

We can use observe to both see intermediate structures, an as a
tool to see how much of a lazy structure is actually eval uated,
without fear of changing the evaluation order. This is where the
power of observe lies.

There is a caveat which we will return to in Section 6. If we had
inlined the right-hand side of the list definition xs in ex6 into the
print statement, we would have two observers, as shown in ex7.

ex7 :: IO ()
ex7 = let xs = [0..9]
 in print ((observe "list" xs) !! 2
 + (observe "list" xs) !! 4)

Now we see this observation

-- list
{ (_ : _ : 2 : _)
, (_ : _ : _ : _ : 4 : _)
}

Remember, this is the same list observed from two differe nt
places, so it has two individual contexts. For now, it is eno ugh to
state that even if the compiler did inline observe, nothing obse rve
does effects the execution of the Haskell code itself in any way.

3.5 Multiple observes

One program can contain many specific instances of observe. W e
might rewrite the natural example from the introduction. ("…"
refers to more text, as shown in output comments)

natural :: Int -> [Int]
natural
 = observe "after reverse" :: Observe [Int]
 . reverse
 . observe "after map …" :: Observe [Int]
 . map (`mod` 10)
 . observe "after takeWhi …" :: Observe [Int]
 . takeWhile (/= 0)
 . observe "after iterate …" :: Observe [Int]
 . iterate (`div` 10)

Running this on the example data, 3408, gives:

-- after iterate (`div` 10)
 (3408 : 340 : 34 : 3 : 0 : _)
-- after takeWhile (/= 0)
 (3408 : 340 : 34 : 3 : [])
-- after map (`mod` 10)
 (8 : 0 : 4 : 3 : [])
-- after reverse
 (3 : 4 : 0 : 8 : [])

This is exactly what we were looking for in our introduction!

www.manaraa.com

- 5 -

4 Advanced uses of observe
We have seen how observe is a powerful tool for seeing what
before was hidden. We now look at a number of other ways of
using observe for debugging, beyond simply looking inside pipe-
lines.

4.1 Observing Functions

If we can observe base types (like Int and Bool), and can obser ve
containers (like tuples and lists), can we also observe Haske ll
functions?

What does it mean to observe a function? We argue that to ob-
serve a function is to observe a finite mapping from (observ able)
arguments to (observable) results. So, for our observationa l pur-
poses, functions are just a bag of argument-result pairs, one for
each time the observed function is invoked.

Functions are observed only in the specific ways they are used.
Function arguments (or results) might contain unevaluated as-
pects, like several of the examples in Section 3.

What does this mean in practical terms? Let's look at an exa mple:

ex8 = print
 ((observe "length" :: Observe ([Int] -> Int))
 length [1..3]
)

This allows the following observation

-- length
let fn (_ : _ : _ : []) = 3

We notice a number of things about this example.

• observe now takes three arguments, the label, the observed
entity (the length function), and the argument to length. Re-
member that "observe <label>" is just a style of id, and id
just returns its argument. The effect on the Haskell program
can be explained using simple rewriting

 (observe "length" :: Observe ([Int] ->Int))
 length [1..3]
 -- remove the type annotation
= observe "length" length [1..3]
 -- turn observe into id
= id length [1..3]
 -- id takes one argument
= (id length) [1..3]
 -- which is simply returns
= (length) [1..3]

This line of reasoning also works with further arguments, and
observe successfully can observe multiple argument func-
tions.

• Rather than render functions as a bag of pairs, we take liber-
ties and use a more Haskell like syntax when printing debug-
ging output.

• The length function did not look at part of its argument, spe-
cifically the elements of the list. This is in no way reflecting
the state of the list itself. Someone else might have ev aluated
the elements, but we will never see this by observing length,

because the observation on length is only concerned with the
way the argument and result is used specifically by length in
that context.

Observing functions is general and powerful! We place observe a t
the caller site, and can see the effect that a specific func tion has
from this context, including higher order functions.

ex9 = print
 ((observe "foldl (+) 0 [1..4]"
 :: Observe ((Int -> Int -> Int)
 -> Int -> [Int] -> Int)
) foldl (+) 0 [1..4]
)

-- foldl (+) 0 [1..4]
let fn { let fn 6 4 = 10
 3 3 = 6
 1 2 = 3
 0 1 = 1
 }
 0
 (1 : 2 : 3 : 4 : [])
 = 10

Notice by observing foldl, we have also observed its arguments,
including a functional one. We can see exactly how higher-
orderness is used.

We can make great use of observing functions when examining
pipelines. Returning to our natural example, we can now observe
the individual transformers, rather than the structures between
them.

natural :: Int -> [Int]
natural
 = observe "reverse" reverse
 . observe "map (`mod` 10)" map (`mod` 10)
 . observe "takeWhile (/= 0)" takeWhile (/= 0)
 . observe "iterate (`div` …)" iterate (`div` 10)

Notice there is no " . " between the observes and the original code.
We give the output from "iterate …" and "takeWhile …"; the
others are similar in style.

-- iterate (`div' 10)
let fn { let fn 3408 = 340
 fn 340 = 34
 fn 34 = 3
 fn 3 = 0
 }
 3408 = (3408 : 340 : 34 : 3 : 0 : _)

-- takeWhile (/=0)
let fn { let fn 3408 = True
 fn 340 = True
 fn 34 = True
 fn 3 = True
 fn 0 = False
 }
 (3408 : 340 : 34 : 3 : 0 : _)
 = (3408 : 340 : 34 : 3 : [])

This is a clear summary of what the transformers were doi ng.
iterate took an integer (3408), and produced a stream of decreas-
ing numbers, of which the first 5 were evaluated. We also see how
the functional argument to iterate was used. takeWhile turned an
infinite list into a finite list, when it found the element 0.

www.manaraa.com

- 6 -

4.2 Observing the State Monad

We can use observe to look at the state inside the state mo nad.
State monads typically have a state transformer function tha t takes
a complete state, and returns a new state. Lets call this function
modify.

modify :: (State -> State) -> M ()

We can observe the state at a specific point using the functio n
observeM.

observeM :: String -> M ()
observeM label
 = modify (observe label :: Observe State)

By placing observeM at appropriate places, we can take snapshot s
of the state. Other combinators can be built to look inside o ther
monads, like the reader monad and writer monad.

4.3 Observing the IO Monad

Can we observe an IO action? An IO action has two parts, the
action (which is opaque), and the result of the action, which we
can observe. We render an IO action using the pseudo-constructor
<IO> , followed by an observation on the returned object. Consider
this example:

ex10 :: IO Int
ex10 = print
 ((observe "getChar" :: Observe (IO Char))
 getChar
)

It would render as

-- getChar
<IO> 'x'

We read this as "some side effect happened, resulting in the va lue
'x' being returned". As another example, consider:

ex11 :: String -> IO ()
ex11 str
 = print
 (observe "putChar" :: Observe (Char -> IO ()))
 putChar str
)

-- putChar
let fn 'x' = <IO> ()

We read this as "we have a function that takes 'x', does som e side-
effect stuff, and returns unit".

4.4 Summary of using observe

We have seen many examples of observe successfully observing
internal, sometimes intermediate, structures. It is both ge neral and
flexible, working in many different practical settings, for e xample
observing how functions are used, observing state inside monads,
and observing IO actions.

5 How does observe work?
We have demonstrated that observe can be used as a powerful
debugging tool, but we still need to answer the question of how t o
implement observe in a portable way. This section introduces t his
new mechanism.

Take as an example this Haskell fragment.

ex12 = let pair = (Just 1,Nothing)
 in print (fst pair)

What steps has pair gone through in the Haskell execution? All
expressions start as unevaluated thunks.

… pair = <thunk> -- start

First, print is hyper-strict in its argument, so it starts the evalua-
tion of the expression "(fst pair)". This causes pair, via f st, to be
evaluated, returning a tuple, with two thunks inside it.

… pair = (<thunk>,<thunk>) -- after step 1

Now the fst function returns the first component of the tuple, a nd
this element is further evaluated by print.

… pair = (Just <thunk>,<thunk>) -- after step 2

And finally, the thunk inside the Just constructor is evaluated,
giving.

… pair = (Just 1,<thunk>) -- after step 3

This evaluation can be illustrated diagrammatically, showing the
three evaluation steps that this structure went through.

• � (1)
(• , •)
 � (2)
 Just •
 � (3)
 1

We can now explain the key ideas behind the implementation of
observe.

• We automatically insert side-effecting functions in place of
the labeled arrows in the diagram above, which both return
the correct result on the evaluation to weak head normal
form, and also inform an offline agent that the reduction has
taken place . All thunks (including internal thunks) are there-
fore replaced with functions that, when evaluated, trigger the
informative side effect.

• We use the type class mechanism as a vehicle for this sys -
tematic (runtime) rewriting.

Next, we examine the details of both of these ideas.

www.manaraa.com

- 7 -

5.1 Communicating the Shape of Data
Structures

We need to give enough information to our viewer to allow i t to
rebuild a local copy of our observed structure. What informat ion
might these side-effecting functions send?

• What evaluation happened (location)

• What the evaluation reduced to ((:), 3, Nothing, etc)

So, in the example above we would pass the following informa-
tion via our side effecting function.

Step Location Constructor

(1) root tuple constructor with two
children

(2) first thunk inside (1) The Just constructor with one
child

(3) first thunk inside (2) The integer 1

This information is enough to recreate the observed structure! We
start with an unevaluated thunk.

• root
We then accept step (1), giving

(• (1.1) , • (1.2))
Here (1.1) represents the first thunk of the constructor produced
by step (1), and (1.2) represented the second child from the same
reduction. We then accept step (2), giving

(Just • (2.1), • (1.2))
Here (2.1) represents the first (and only) thunk of the constructo r
produced by step (2). We finally accept step (3), giving

(Just 1, • (1.2))
Notice we give information about inner thunks we are updating
using both the parent constructor, and the child index number.

We now look at how to insert our message passing functions int o
our data structures.

5.2 Using Type classes for rewriting

We use the type class mechanism to force repeated calls to a
worker function, observer, as and when a structure gets evalua ted.
We have a class Observable, and for each observable Haskell
object, we have an instance of this class.

class Observable a where
 observer :: a -> ObserveContext -> a

Reusing our diagram from above, we have 3 calls to observer .

• � observer (<…>,<…>) CXT
(• , •)
 � observer (Just <…>) CXT
 Just •
 � observe 1 CXT
 1

The first call uses the type instance of Observable, the sec ond uses
the Maybe instance, and the third uses the Int instance. Each call
also is given a context, which contains information about where
this thunk is in relation to its parent node.

The Observable instance for 2-tuples is

instance (Observable a,Observable b)
 => Observable (a,b) where
 observer (a,b) = sendObservePacket "," (do
 a <- thunk a
 b <- thunk b
 return (a,b))

If observer is called at the 2-tuple type, it sends a packet, saying it
has found a tuple, and sets up two new thunks that are the compo-
nents of the tuple. The type of sendObservePacket is

sendObservePacket :: String
 -> MonadObserver a
 -> ObserveContext
 -> a

MonadObserver is a lazy state monad that both counts the total
number of sub-thunks this constructor has, and provides a unique
context for the sub-thunks. thunk has type

thunk :: (Observable a) => a -> MonadObserver a

thunk includes a call back to observer, but at the correct type f or
the sub-thunk.

We now run through an example, to illustrate observer actually
rewriting structures. We use a simplified variation of our earlier
example.

main = let pair = observe "pair" (42,88)
 in print (fst pair)

We expect this to tell us we have a 2-tuple, and that the first ele-
ment is 42. We do not expect observe to tell us anything about the
second element of the tuple, because it is not evaluated.

observe is simply a wrapper to observer.

main = let pair = observer (42,88) {…root…}
 in print (fst pair)

Here we are using {…root…} to notate a context that contains
some information, including this is a root. Now the first t ime
someone evaluates pair, pair evaluates to

… pair = observer <thunk> {…root…}

observer is strict in its first argument, reducing to

… observer (<thunk>,<thunk) {…root…}

We can now execute the function observer for tuples.

www.manaraa.com

- 8 -

… sendObservePacket "," (do
 a <- thunk <thunk>
 b <- thunk <thunk>
 return (a,b)) {…root…}

sendObservePacket now issues a side effect, and passes the con-
text (root) the constructor name (",") and the number of childre n
(2). The thunk inside the monad evaluates to a new call to ob-
server, and sendObservePacket returns the tuple.

… (observer <thunk> {…pId = X, portNo = 0…}
 , observer <thunk> {…pId = X, portNo = 1…}
)

thunk is lazy in its argument, with respect to the monadic aspec t
of the evaluation, so even though we've noted we have 2 thunks,
we've not actually demanded any more evaluation that the conte xt
wanted. To continue, the first element of the pair is select ed (via
fst).

… observer <thunk> {…pId = X, portNo = 0…}

We have thrown away the send element of the tuple, and with it
the side effecting call to observer. In this way, because w e do not
evaluate observer over the second element of the tuple, we w ill
never observe the contents of this element, and never do prema-
ture evalutation because of observe.

The call to observer (that resides in the first element of the tuple)
now evaluates its first argument.

… observer 42 {…pId = X, portNo = 0…}

Which now can reduce to

… sendObservePacket (show 42)
 (return 42)

 {…pId = X, portNo = 0…}

As above, this issues a message (the number 42, child of X, a t port
number zero), and returns the value, this time 42.

… 42

6 The Haskell Object Observation
Debugger

We have an implementation of these ideas; incorporating them
into a full-scale debugging tool we call the Haskell Object Obser-
vation Debugger. We give a short overview of the tool he re. A
user manual is pending.

Figure 1 gives the high level architecture of the Haskell Obj ect
Observation debugger.

• The user is responsible for producing a log file of the
observations. The easiest way of doing this is to import
the Observe library, which exports several debugging
functions, including observe.

• Using the Observe library produces a log file in XML
format.

• The browser then reads the XML audit trail of observa-
tions, and recreates the structures (much like was done
in Section 5.1)

6.1 The Observe library

The observe library is an implementation of the observe combi na-
tor, some supporting combinators, and many instances for vario us
Haskell types. Observe provides:

Base Types: Int, Bool, Float, Double, Integer, Char, ()

(Observable a) => [a] and (Maybe a)

(Observable a, Observable b)

 => (a,b) and (Array a b) and (Either a b)

Constructors:

(...) => 3-tuple, 4-tuple, 5-tuple

Functions: (Observable a, Observable b) => (a -> b)

Extensions: Exceptions (error, etc) -- with GHC and STG Hugs

In order to do debugging, you need to be inside a debugging
mode. When this mode is turned on, the trace logfile is creat ed,
and the system is ready for receiving observations. When the
mode is turned off, the trace logfile is closed. We provide a com-
binator that helps with these operations.

Haskell

Program

Observe

Library

XML

trace

calls writes

read by

 1 : _ : 3 : _

Browser

Figure 1: High Level Architecture of the Haskell Object Observation Debugger

www.manaraa.com

- 9 -

runO :: IO () -> IO ()

This turns on observations, runs the provided IO action, turns off
observations, and returns. In a Haskell program with main, you
might write

main = runO $ do
 .. rest of program ..

If an observe is executed without the observation mechanism
being turned on, then it behaves like before (passing on its second
argument) but simply does not record the observation.

To help with interactive use, we provide two extra combinator s.

printO :: (Show a) => a -> IO ()
printO expr = runO (print expr)

putStrO :: String -> IO ()
putStrO expr = runO (putStr expr)

These are provided for convenience. For example, in Hugs you
might write

Module> printO (observe "list" [0..9])

Because this version of print starts the observations, you c an use it
at the Hugs prompt, and make observations on things at the com-
mand line level.

Though Observe.lhs is itself portable (only needing unsafePer-
formIO) we also provide versions of Observe.lhs for speci fic
compilers. While Classic Hugs98 uses the standard Observe.lhs,
both GHC and STG Hugs use extended versions that provide extra
functionality for observing Exceptions. Catching, observing and
rethrowing exceptions allows you to observe exactly where in
your data structures an error is raised, and can also be used f or
debugging programs that blackhole.

In the Appendix we give code fragments from the Observe li-
brary, which include many more examples of instances for the
Observable class. If a user wants to observe their own str uctures,
then they need to provide their own instances. However, as can be
seen, this is quite straightforward.

The trace log is put into a file called observe.xml. Though it might
seem that XML is a poor choice for an intermediate format , off
the shelf compression tools result in a surprisingly good quali ty of
compression (around 90%), which gives significantly better foot
print size than straightforward binary format, and we have plans
for a future version that uses a pre-compressed trace.

There are a couple of important caveats about having observe as a
function provided by a library, rather than a separate compila-
tion/interpretation mode.

• observe is referentially transparent with regard to the exec u-
tion of the Haskell program, but as we saw in Section 3.4,
observe is not referentially transparent with regard to poss i-
ble observations it might make. Compiler optimizations
might move observe around, changing what is observed.

This does not turn out to be a problem in practice. The trans-
formation shown in Section 3.4 and other problematic trans-
formations, though technically valid, change the sharing be-

havior of the program. Compilers do not like to change these
sorts of properties without fully understanding the ramifica-
tions of doing so. Furthermore, the worst that can happen is a
single structure is observed a number of times. If this occu r-
res, it should be obvious what is happening.

This glitch with observe turns out not to be a problem in
GHC, Classic Hugs and STG Hugs. If any other Haskell
compiler has a problem with inappropriate sharing of ob-
serve, this can be fixed, even by adding a special case to the
sharing optimization. It is a lot easier to add special ca ses
than a whole debugger!

• Hugs does not re-evaluate top level updatable values, called
Constant Applicative Forms (CAF's), between specific invo-
cations of expressions at the command line prompt. This is a
good thing in general, but it also means that if you want to
observe a structure inside a CAF's, you need to reload the of -
fending CAF each time you want to observe it. This is a just
minor annoyance in practice; perhaps a Hugs flag turning off
caching of CAF's between expression evaluations could be
added.

6.2 Using the HOOD browser

To demonstrate our browser tool, take the example observatio n on
foldl, from Section 4.1. We use runO inside main to turn on and
off the observation machinery.

main :: IO ()
main = runO ex9
ex9 :: IO ()
ex9 = print
 ((observe "foldl (+) 0 [1..4]"
 :: Observe ((Int -> Int -> Int)
 -> Int -> [Int] -> Int)
) foldl (+) 0 [1..4]
)

This produces a file called observe.xml. We now start our bro wser
- the details are implementation dependent, but this can be done
directly using a JVM, or from inside Netscape or Internet E x-
plorer. After the browser is started, it offers the user a list of pos-
sible observations to look at.

This shows us we have loads 65 "events" (observation steps). W e
only have one observation ("foldl (+) 0"), and we choose to di s-
play it after evaluation, giving

www.manaraa.com

- 10 -

This display uses colors to give information beside the raw text.
We use purple for base types, blue for constructors, black for
syntax, and yellow highlighting for the last expression changed.

This viewer has the ability to step forwards and backwards
through the observation, seeing what part of the observation wa s
evaluated (demanded) in what order. Though in many cases we
are not interested in this information, it sometimes is inv aluable.
For example, we step back a few steps during our perusal of the
fold example, and we see a strange thing.

We use a (red) '?' to signify an expression that has been enter ed
(someone has requested its evaluation), but has not yet reached
weak head normal form. We can see we have a number of ques-
tion marks, which correspond to a rather nasty chain of enters as a
consequence of a lazy accumulating parameter, a well-known
strictness bug.

This dynamic viewing of how structure and functions are used
inside real contexts can bring a whole new level of understanding
of what goes on when we evaluate functional programs, and could
serve a useful pedagogical tool.

7 Related Work
We have already discussed a number of debugging systems, and
they all give context to this work. There are two pieces o f closely
related work that should be given special mention.

• Firstly Hawk, a microprocessor architecture specificatio n
embedded language has a function called probe [4].

probe :: Filename -> Signal a -> Signal a

probe works exactly like observe on the Signal level, where
Signals are just lazy lists. However, probe is strict in the
contents of the signal, so it can change the semantics of a sig-
nal. Encouragingly, probe has turned out to be extremely
useful in practice.

• Secondly, the stream-based debugger in [12] is also related,
because it also puts emphasis on debugging via understand-
ing intermediate structures, even if the tracing mechanism
was completely different.

The work in this paper was undertaken because of the success
stories told by both these projects, and the hope that the genera li-
zation of both will be useful in practice when debugging Haskell
programs.

8 Conclusions & Future Work
All previous work on debuggers for Haskell have only been im-
plemented for subsets of Haskell, and are therefore of limit ed use
for debugging real Haskell programs. This paper combats the nee d
for debugging real Haskell by using a portable library of debug-
ging combinators, and develops a surprisingly rich debugging
system using them.

There is work to be done with building semantics for observe. T he
semantics given in [3] would be a good place to start. A semantics
could clean up the caveats that were discussed in Sections 3.4 and
6.1.

This debugging system could be made even more useful if the
Observable class restriction was removed. It would be conce iv-
able to have a compiler flag where Observable is passed sil ently
everywhere, and therefore can be used without type restrictions ,
provided we supply a default instance for Observe.

The pretty printing algorithm used in the browser is robust (its
actually a Java port of the Haskell algorithm published in [13])
but the printing of structures is inflexible. For example, we st ill
print strings as a list of characters, which is verbose. A nother
example is when displaying abstract syntax trees; concrete synt ax
is typically more concise. It would be nice to have a flexi ble
scheme for providing rendering shortcuts like these.

www.manaraa.com

- 11 -

Hood will be packaged and available for download real soon now.
The source code is available from the same CVS repository as
GHC and Hugs.

HOOD has a web page: http://www.cse.ogi.edu/~andy/hood/

Acknowledgements
The idea for using Haskell type classes and unsafe operations t o
observe intermediate data structures arose from a conversa tion
between Simon Marlow and the author in May 1992, when we
were both graduate students at Glasgow. Thanks Simon! Thank
you also to my colleagues at OGI who gave useful comments and
suggestions.

References
[1] Augustsson, L., Johnsson, T. (1989) The Chalmers Lazy-

ML Compiler. The Computing Journal. 32(2): 127-139.

[2] Hughes, R.J.M. (1989) Why Functional Programming
Matters, Computing Journal. 32(2): 98-107.

[3] Launchbury, J (1993) A Static Semantics for Lazy Func-
tional Programs. Proc ACM Principles of Programming
Languages, Charleston.

[4] Launchbury, J., Lewis, J. and Cook, B. (1999) On embed-
ding a microarchitectureal design language within
Haskell. In ICFP 99

[5] Nilsson, H. (1998) Declaring Debugging for Lazy Func-
tional Languages. PhD thesis. Department of Computer
and Information Science, Linköping University, Sweden.

[6] O'Donnell, J. and Hall, C. (1988) Debugging in applicative
languages. Lisp and Symbolic Computation, 1(2):113-145

[7] Penney, A. (1999) Augmented Trace-based Functional
Debugging. PhD thesis. Department of Computer Science,
University of Bristol, England.

[8] Runciman, C and Sparud J. (1997) Tracing lazy functional
computations using Redex trails. In Proceedings of the 9 th
International Symposium of Programming on Program-
ming Languages, Implementations, Logics and Programs.

[9] Shapiro, E. (1982) Algorithmic Program Debugging. MIT
Press.

[10] Sinclair, D. (1991) Debugging by Dataflow - Summary. In
Proceedings of the 1991 Glasgow Workshop on Functional
Programming, Portree, Isle of Skye. pp 347-351.

[11] Sparud, J. (1995) A Transformational Approach to Debug-
ging Lazy Functional Programs. PhD thesis. Department
of Computer Science, Chalmers University of Technology,
Goteborg, Sweden.

[12] Sparud, J. and Sabry, A(1997) Debugging Reactive Sys-
tems in Haskell, Haskell Workshop, Amsterdam.

[13] Wadler P. (1998) A prettier printer. Draft paper from
http://www.cs.bell-labs.com/who/wadler/

[14] Wadler, P. (1998) Why no one uses functional languages.
SIGPLAN Notices. 33(8): 23-27.

[15] Watson, R. (1997) Tracing Lazy Evaluation Program
Transformation. PhD thesis. School of Multimedia and In-
formation Technology, Southern Cross University, Austra-
lia.

www.manaraa.com

- 12 -

Appendix A - Haskell Code from Observe.lhs
class Observable a where
 observer :: a -> ObserveContext -> a

observe :: (Observable a) => String -> a -> a
observe name a = generateContext name maxBound a

type Observing a = a -> a

-- Some Haskell Base types
instance Observable Int where { observer = observe Lit }
instance Observable Bool where { observer = observ eLit }
instance Observable Char where { observer = observ eLit }
instance Observable () where { observer = observeL it }

observeLit :: (Show a) => a -> ObserveContext -> a
observeLit lit cxt =
 seq lit $
 sendObservePacket (show lit) (return lit) cxt

-- Some constructors
instance (Observable a,Observable b) => Observable (a,b) where
 observer (a,b) = sendObservePacket "," (do
 a <- thunk a
 b <- thunk b
 return (a,b))

instance (Observable a) => Observable [a] where
 observer (a:as) = sendObservePacket ":" (do
 a <- thunk a
 as <- thunk as
 return (a:as))
 observer [] = sendObservePacket "[]" (return [])

-- The thunk wrapper round observer
data MonadObserver a = MonadObserver { runMO :: Int -> Int -> Int -> (a,Int) }

instance Monad MonadObserver where
 return a = MonadObserver (\ d c i -> (a,i))
 fn >>= k = MonadObserver (\ d c i ->
 case runMO fn d c i of
 (r,i2) -> runMO (k r) d c i2
)

thunk :: (Observable a) => a -> MonadObserver a
thunk a = MonadObserver $ \ depth parent port ->
 (observer a (ObserveContext
 { observeParent = parent
 , observePort = port
 , observeDepth = depth
 })
 , port+1)

-- Now some side effecting utility functions
sendObservePacket :: String -> MonadObserver a -> O bserveContext -> a
sendObservePacket consLabel fn context = unsafePerf ormIO $
 do { g <- readIORef observeGlobal
 ; case g of
 NoObserveGlobal
 -> error "The global observe state is not ena bled"
 _ -> return ()
 ; let node = observeUniq g
 ; writeIORef observeGlobal (g { observeUniq = node + 1 })
 ; let (r,portCount) = runMO fn (observeDepth conte xt - 1) node 0
 ; hPutStrLn (observeHandle g)
 (xmlCons node context (showXmlString consLabe l) portCount)
 ; return r
 }

